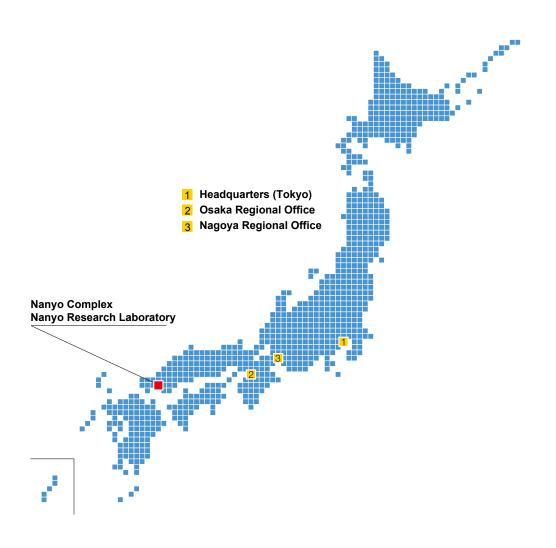


CHLOROPRENE RUBBER

SKYPRENE®

Introduction

Tosoh Corporation was established in 1935. The company's first products were soda ash and caustic soda. In the years that followed, Tosoh gradually added new plants to produce an ever-increasing stream of important industrial chemicals. The technology developed and the experience gained in operating these plants provided the basis for Tosoh's expansion and growth into diverse sectors.


Early in the 1960s, Tosoh entered the organic and petrochemical fields, beginning with its grouping together of a number of firms into a petrochemical complex. The company today has two such complexes in Japan that produce a wide range of products. It also has three well-equipped laboratories in Japan staffed by scientists and engineers who research, develop and provide technical services and advice for the application of Tosoh products.

Nanyo Complex

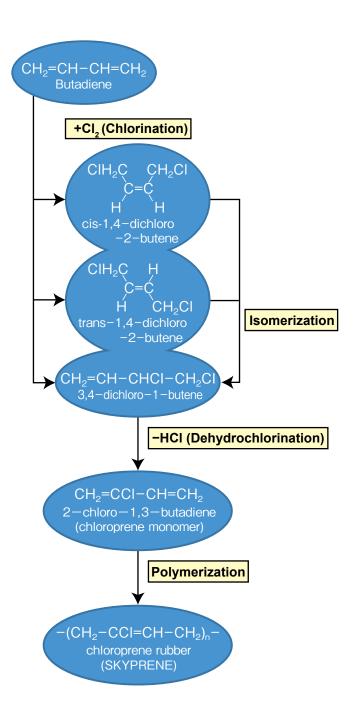
Table of Contents

Introduction	01	Adhesive Applications	
SKYPRENE [®]	03	Development Chart	15
Product Grades and Characteristics	04, 05	Products and Characteristics	16
Industrial Applications		General-Purpose Grades	17
Development Chart	06	Heat resistant Grades	18
Products and Characteristics	07, 08	Eco Friendly Grades	19, 20
General-Purpose Grades	09	Latex Grades	
Crystallization-Resistant Grades	10	Products and Characteristics	21
Injection Molding Grades	11, 12	Industrial and Adhesive Applications	22
Extrusion Grades	13		
Sulfur-modified Grades	14		

SKYPRENE®

What is "SKYPRENE"?

Skyprene is Tosoh Corporation's registered brand of chloroprene rubber (CR). This high-quality CR developed, manufactured, and sold by Tosoh, in produced through a combination of chlorination techniques developed by Tosoh over many years. Foremost among the qualities that make Skyprene superior to other CR compounds is its resistance to cold, heat, abrasion, oils, and chemicals. Tosoh boasts a long-standing reputation for consistently high-quality manufacturing, and Skyprene's stability strongly reflects this characteristic.


Product safety

The unreacted chloroprene monomer in Skyprene is less than one part per million (<0.0001 % by weight). For additional information, please see SDS (Safety Data Sheet) of Skyprene.

Skyprene is manufactured under certified ISO-9001 conditions at Tosoh Nanyo Complex

MANUFACTURING PROCESS OF SKYPRENE

Product Grades and Characteristics

Chlorine groups and a uniform molecular structure mean that chloroprene rubber gradually crystallizes at low temperatures. The rate of crystallization depends on the conditions during polymerization. The crystallization rates for Skyprene are indicated in figure-1; a change in hardness occurs at -10°C .

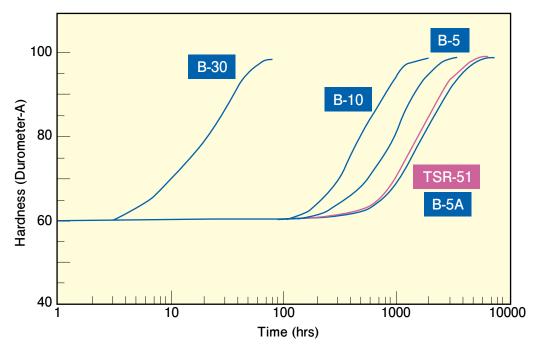


Figure-1 Change in hardness of Skyprene at -10 $^{\circ}$ C (standard formulation, cured 20 minutes at 150 $^{\circ}$ C)

Product Grades and Characteristics

Skyprene is classified according to the types of modifier that is used;

Skyprene grades are classified according to the range of mooney viscosity and the range of crystallization rate as indicated figure-2.

Mercaptan-modified

Molecular weight is controlled with mercaptan

Xanthogen-modified

Molecular weight is controlled with xanthogen

Sulfur-modified

Molecular weight is controlled with sulfur

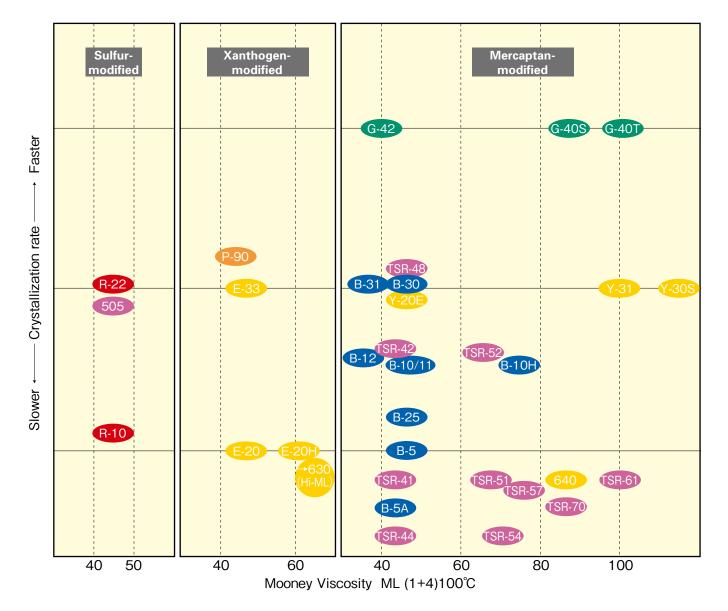
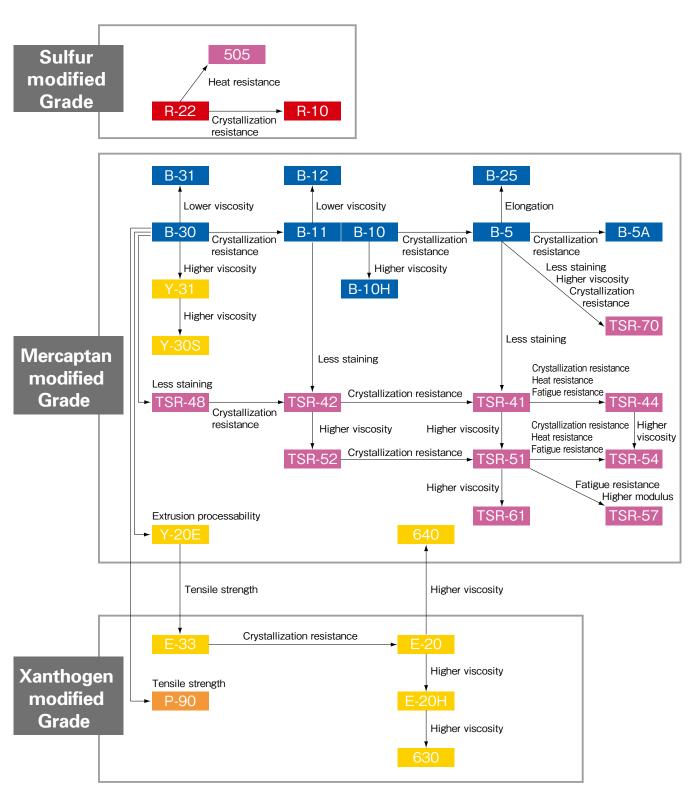



Figure-2 Skyprene Grades and Characteristics

Development Chart

[TSR] is a registered trademark of TOSOH Corporation

Products and Characteristics

Product	Туре	Mooney Viscosity ML (1+4) 100°C	Crystallization resistance	
B-5A		40 ~ 50	Very High	The slowest crystallization rate. Extremely small change in
B-5		45 ~ 53		Slow crystallization rate. Low change in hardness at low
B-10		47 ~ 55		Crystallization rate is intermediate between B-30 and B-5.
B-10H		65 ~ 85	High	High mooney viscosity form of B-10.
B-11		45 ~ 53	i ligi i	Crystallization rate is intermediate between B-30 and B-5.
B-12	Mercaptan-	36 ~ 44		Low mooney viscosity form of B-11.
B-25	modified	45 ~ 53		High elongation form of B-5.
B-30		45 ~ 53		General purpose grade of mercaptan modified type with a
B-31		36 ~ 44		Low viscosity form of B-30.
Y-20E		43 ~ 53	Medium	The best extrusion characteristics of all Skyprene grades,
Y-30S		111 ~ 135		High viscosity form of B-30.
Y-31		90 ~ 110		Low viscosity form of Y-30S.
P-90		40 ~ 50	Relatively Low	Xanthogen modified type with crystallization rate slightly
E-20		43 ~ 53	High	Extrusion grade with slower crystallization rate.
E-20H	Xanthogen- modified	54 ~ 74	1 11811	High viscosity form of E-20.
E-33	mounied	43 ~ 53	Medium	Extrusion grade of xanthogen modified type with a medium
630		100 ~ 120	High	High viscosity form of E-20H.
640		70 ~ 100	Very High	Extrusion grade of mercaptan modified type with excellent
TSR-41		40 ~ 50	- Ory Trigit	Low viscosity form of TSR-51.
TSR-42		40 ~ 50	High	Low viscosity form of TSR-52.
TSR-44		40 ~ 50	Very High	Low viscosity form of TSR-54.
TSR-48		45 ~ 53	Medium	Similar to B-30 in all respects, furthermore with superior
TSR-51	Mercaptan- modified	55 ~ 75	Very High	Representative grade of TSR series having slow crystalliz
TSR-52	modified	55 ~ 75	High	Similar to TSR-51 in all respects except crystallization re
TSR-54		60 ~ 80		The most crystallization resistant grade of TSR series, off
TSR-57		67 ~ 80	Very High	High elastic modulus form of TSR-51.
TSR-61		90 ~ 110	V GI Y TIIBIT	High viscosity form of TSR-51.
TSR-70		81 ~ 95		High mooney viscosity form of B-5.
R-10		35 ~ 55 (*1)	High	Similar to R-22 in all respects except crystallization rate.
R-22	Sulfur- modified	35 ~ 55 (*1)	Medium	General purpose grade in sulfur modified type with medium
505		34 ~ 54 (*1)	Relatively High	Heat resistance close to that of the mercaptan modified

Note *1: Mooney viscosity at the time of production

Characteristics	Applications
hardness at low temperature. temperature. medium rate of crystallization.	Automotive rubber parts Industrial rubber goods Electrical wire and cables Belts Hoses Rolls Anti-vibration rubber parts Others
offering smooth finishes on extrusions. Suitable for extruding parts and calender products.	Extruded products Calender products Automotive rubber parts
faster than B-30, offering extremely high mechanical strength.	Industrial rubber goods Electrical wire and cables Belts, Hoses, Rolls Anti-vibration rubber parts Others
rate of crystallization, offering a good balance of mechanical strength and extrusion characteristics. crystallization resistance.	Extruded products Calender products Others
fluidity and less staining for injection molding. ation rate and slightly high Mooney viscosity. sistance. Crystallization rate is intermediate between TSR-48 and TSR-51. ering the best resistance to heat and dynamic fatigue resistance.	Automotive rubber parts (Boots etc) Industrial rubber goods Electrical wire and cables Hoses Rolls Others
rate of crystallization.	Belts Rolls Sponges
grade, offering better dynamic fatigue resistance.	Linings Industrial rubber goods Others

General-Purpose Grades

Skyprene general-purpose grades

B-30, B-31, Y-30S, Y-31, P-90

Skyprene general-purpose grades' modulus, tensile strength, and tear strength are increased through the use of raw rubber with a high mooney viscosity. Their properties are shown in table 1.

SKYPRENE B-30

Skyprene B-30 is a mercaptan-modified, general-purpose grade with a medium rate of crystallization and moderate mooney viscosity. It offers good heat, oil, and weather resistance and good storage stability.

SKYPRENE B-31

Skyprene B-31 is the low-viscosity form of B-30. It features good fluidity and dimensional stability because of its low mooney viscosity. This is why B-31 is suitable for extruding, calendering, and injection molding. It also features low calorification during mill mixing, which positively affects the stability of mooney scorch and overcomes most other problems during mixing.

SKYPRENE Y-30S

Skyprene Y-30S is similar to B-30 in all respects except mooney viscosity, which is considerably higher. The high mooney viscosity helps to reduce production costs because it makes it possible to use a large amount of filler or oil. To improve product processability, it is possible to blend Y-30S with other grades. Y-30S is also used for adhesives.

SKYPRENE Y-31

Skyprene Y-31 is the low-viscosity form of Y-30S. Its processability and fluidity are better than that of Y-30S.

SKYPRENE P-90

Skyprene P-90 is a xanthogen-modified grade with high mechanical strength and modulus. Its crystallization rate is slightly faster than B-30's.

<Table 1> GENERAL PROPERTIES

SKYPRENE PRODUCTS	SKYPRENE PRODUCTS				Y-31	P-90
Formulation	(phr)					
SKYPRENE	" '					
MgO				4		
Stearic acid				0.5 30		
SRF Carbon Black (N-770) ZnO				5		
Accelerator ETU				0.5		
Total				140.0		
Raw Rubber Mooney Viscosity						
ML(1+4)100°C		49	42	127	100	45
Compound Properties Mooney Scorch ML(1)125°C						
Vm		52	46	85	74	47
t5	min	7.9	8.1	6.1	6.5	7.5
Vulcanizate Properties						
(Cure; 20min, at 160°C) Original						
H _s (Durometer-A)		66	65	68	69	67
T _B	MPa	23.1	23.0	23.8	23.4	26.0
E _B	%	390	400	380	380	420
M ₃₀₀	MPa	16.3	15.9	17.7	17.4	17.5
Aging Test						
(70hrs at 100°C)		4	4			4
A _H	pts %	-16	-16	-18	-16	4 -21
$A_{c}(T_{B})$ $A_{c}(E_{B})$	%	-15	-13	-24	-21	-24
Compression Set						
(70hrs at 100℃)						
CS	%	36	37	34	36	36
Low Temperature Properties Gehman Torsion Test						
T,	င	-31.7	-30.9	-32.0	-31.6	-31.5
T ₅	°C	-35.5	-35.3	-35.4	-35.3	-35.4
T ₁₀	$^{\circ}$	-36.4	-36.3	-36.3	-36.2	-36.3
T ₁₀₀	°C	-41.2	-40.8	-41.0	-40.9	-41.3
Tg	°C	-38.0	-37.7	-37.5	-37.8	-37.7
Permanent Set						
(-10°C, 200%Elongation)						
PS	%	123	130	114	116	136

^{*}These figures are only for reference purposes and therefore do not serve as specifications.

Applications

Automotive rubber parts, industrial rubber goods, electrical wire and cables, hoses, belts and rolls, anti-vibration rubber, and others

Crystallization-Resistant Grades

Skyprene Crystallization-Resistant Grades

B-5, B-5A, B-10, B-10H, B-11, B-12, B-25

The general-purpose grades gradually crystallize at low temperatures.

To improve crystallization resistance, the polymer molecular structure is made more irregular than that of general-purpose grades. This slows down the crystallization rate. Compared to general grades, the crystallization-resistant grades generally have lower vulcanizate properties.

SKYPRENE B-5

Skyprene B-5 has superb crystallization-resistant properties. This compound is as easy to process as noncrystalline rubber, even in cold weather.

SKYPRENE B-5A

Skyprene B-5A is the most crystallization-resistant grade in the Skyprene lineup.

SKYPRENE B-10

Skyprene B-10 offers a crystallization rate between that of Skyprene general-purpose grade B-30 and Skyprene crystallization-resistant grade B-5.

SKYPRENE B-10H

Skyprene B-10H is the high viscosity grade of B-10.

SKYPRENE B-11

Skyprene B-11's crystallization rate is almost equal to B-10's.

SKYPRENE B-12

Skyprene B-12 possesses the same rate of crystallization as B-11 and has a low mooney viscosity.

SKYPRENE B-25

B-25 improves upon the elongation of B-5, however the resistance to crystallization is a bit less than B-5.

<Table 2> GENERAL PROPERTIES

Table 27 GLIV	ILIVAL	AL PROPERTIES							
SKYPRENE PROI	DUCT	B-5	B-5A	B-10	B-10H	B-11	B-12	B-25	
Formulation SKYPRENE MgO Stearic acid SRF Carbon Black (I ZnO Accelerator E	d N-770)	100 4 0.5 30 5 0.5							
Total					140.0				
Raw Rubber Mooney Viscosity ML(1+4)100°C		47	43	52	70	46	39	48	
Compound Properties Mooney Scorch ML(1)125°C Vm t5	min	52 8.9	47 10.0	54 8.2	65 7.6	52 8.4	45 8.8	51 9.3	
Vulcanizate Properties (Cure;20min,at 160°C) Original H _s (Durometer-A) T _B E _B M ₃₀₀	MPa % MPa	65 21.5 390 15.2	65 21.1 390 14.7	66 21.1 380 14.9	66 21.4 370 15.7	66 21.1 380 15.4	65 21.6 390 15.0	65 22.8 410 15.2	
Aging Test (70hrs at 100°C) A _H A _C (T _B) A _C (E _B)	pts % %	4 -16 -13	6 -13 -15	5 -23 -21	5 -24 -22	6 -20 -21	5 -16 -16	4 -15 -16	
Compression Set (70hrs at 100°C)	%	35	39	35	35	38	38	37	
Low Temperature Properties Gehman Torsion Test T_2 T_5 T_{10} T_{100}	ວູ ວູ ວູ ວູ ວູ	-32.9 -35.0	-31.7 -34.7	-33.6 -35.2	-34.0 -35.3	-34.5 -35.1	-30.3 -34.9 -35.3 -40.3	-32.6 -35.1 -38.4	
Tg Permanent Set (-10°C, 200%Elongation) PS	°C %	-35.9 18	-34.7 7	-36.4 31	-36.2 31	-36.4 33	-36.9 47	-35.9 25	

^{*}These figures are only for reference purposes and therefore do not serve as specifications.

Applications

Automotive rubber parts, industrial rubber goods, electrical wire and cables, hoses, belts and rolls, anti-vibration rubber, and others

Injection Molding Grades

Skyprene injection-molding grades

TSR-41, TSR-42, TSR-44, TSR-51, TSR-52 TSR-54, TSR-57, TSR-61, TSR-70, TSR-48

Each Skyprene injection-molding grade features these characteristics:

- 1. Heightened resistance to mold staining, reducing the frequency of washing.
- 2. Smooth separation of parts from the molds, reducing defects.
- Excellent flow in the injection machines and molds, avoids decreasing mechanical strength at the welded locations of compounds.
- 4. Superior stability in storage, minimizing such problems as scorch and the like.
- 5. Excellent cold resistance and less change in hardness at low temperature. The brittle point may be improved with combinations of specific plasticizers.
- High heat resistance and mechanical strength, making these compounds ideal for applications requiring high reliability, such as car safety devices and gears.

SKYPRENE TSR-51

Skyprene TSR-51 is a representative grade from our lineup for injection molding. This grade displays a slow crystallization rate and a slightly high Mooney viscosity.

SKYPRENE TSR-41

Skyprene TSR-41 is low viscosity form of TSR-51.

SKYPRENE TSR-61

Skyprene TSR-61 is high viscosity form of TSR-51.

SKYPRENE TSR-52

Skyprene TSR-52 is similar to TSR-51 in all respects except crystallization resistance. Crystallization rate of TSR-52 is intermediate between TSR-48 and TSR-51.

SKYPRENE TSR-42

Skyprene TSR-42 is low viscosity form of TSR-52.

SKYPRENE TSR-54

Skyprene TSR-54 is the most crystallization resistant grade of the TSR series and offers the best resistance to heat and dynamic fatigue.

SKYPRENE TSR-44

Skyprene TSR-44 is low viscosity form of TSR-54.

SKYPRENE TSR-57

Skyprene TSR-57 is a well-balanced grade in modulus and resistance to fatigue. TSR-57 also has excellent strength.

SKYPRENE TSR-70

Skyprene TSR-70 is similar to B-5 in crystallization resistance, and high viscosity.

SKYPRENE TSR-48

Skyprene TSR-48 is similar to B-30 in all respects, furthermore it possesses superior fluidity and less staining properties.

Applications

Automotive rubber parts (boots etc.), industrial rubber parts, electrical wire and cables, hoses and rolls, and others

<Table 3> GENERAL PROPERTIES

SKYPRENE PRODUCT		TSR-41	TSR-42	TSR-44	TSR-51	TSR-52	TSR-54	TSR-57	TSR-61	TSR-70	TSR-48
Formulation SKYPRENE MgO Stearic acid SRF Carbon Black (N-770) ZnO Accelerator ETU	(phr)	100 4 0.5 30 5 0.5									
Total						14	0.0				
Raw Rubber Mooney Viscosity ML(1+4)100°C		44	44	48	66	64	71	74	97	88	47
Compound Properties Mooney Scorch ML(1)125°C Vm t5	min	50 9.7	51 9.3	54 10.6	64 8.6	62 8.3	64 9.3	68 8.2	79 7.6	74 7.7	50 8.3
Vulcanizate Properties (Cure; 20min, at 160°C) Original H _s (Durometer-A) T _B E _B M ₃₀₀	MPa % MPa	66 21.3 390 14.8	66 21.5 390 14.7	65 20.4 400 14.3	66 21.5 370 15.8	66 22.1 380 16.0	66 22.9 410 15.1	66 22.0 380 15.9	67 22.1 360 16.5	66 20.8 350 20.8	66 23.2 400 16.2
Aging Test (70hrs at 100°C) A_{H} $A_{c}(T_{B})$ $A_{c}(E_{B})$ Compression Set	pts % %	3 -11 -13	4 -15 -18	4 -8 -10	3 -16 -16	3 -18 -16	3 -8 -10	2 -9 -13	3 -10 -14	5 -14 -14	6 -15 -18
(70hrs at 100°C)	%	45	42	43	41	43	45	39	39	37	45
Low Temperature Properties Gehman Torsion Test			00.7	00.7	00.0	00.1	07.4	00.0	00.0	00.0	00.4
T_2 T_5 T_{10}	ာ င	-30.0 -32.3 -34.9	-30.7 -35.0 -35.3	-26.7 -30.4 -31.4	-29.9 -32.1 -35.0	-30.4 -34.7 -35.2	-27.4 -30.6 -31.8	-30.2 -32.7 -35.2	-30.0 -31.8 -34.7	-30.3 -34.2 -35.3	-33.1 -35.6 -36.9
T ₁₀₀	°C	-37.8	-40.2	-36.2	-37.7	-40.1	-36.2	-38.4	-37.8	-39.9	-41.1
Tg	°C	-35.5	-36.8	-33.0	-35.4	-36.5	-33.1	-35.4	-34.3	-36.4	-38.4
Permanent Set (-10°C, 200%Elongation) PS	%	11	45	6	13	41	6	11	13	9	125

 $[\]ensuremath{\ast}$ These figures are only for reference purposes and therefore do not serve as specifications.

Extrusion Grades

Skyprene Extrusion Grades

Y-20E, E-33, E-20, E-20H, 630, 640

The characteristics of their standard formulations are indicated in table 4.

SKYPRENE Y-20E

Skyprene Y-20E offers the best extrusion characteristics among the extrusion grades, but its mechanical characteristics are inferior to E-33. It is generally blended with Skyprene crystallization-resistant grade B-10 or with Skyprene general-purpose grade B-30.

SKYPRENE E-33

Skyprene E-33 is the xanthogen-modified grade for extruding. The mechanical properties are the same as B-30's. In addition, E-33 has an excellent processability and extrudability. E-33 is suitable for extruding and calendering.

SKYPRENE E-20

Skyprene E-20 is similar to E-33 in all respects except its better crystallization resistance.

SKYPRENE E-20H

Skyprene E-20H is the high-viscosity form of E-20. It offers less shape deformation at the time of vulcanization.

SKYPRENE 630

Skyprene 630 is the high-viscosity form of E-20H.

SKYPRENE 640

Skyprene 640 is a mercaptan-modified extrusion grade with excellent crystallization resistance. Its mooney viscosity is between that of E-20H and 630.

<Table 4> GENERAL PROPERTIES

SKYPRENE PRODU	Y-20E	E-33	E-20	E-20H	630	640	
Formulation SKYPRENE MgO Stearic acid SRF Carbon Black (N ZnO Accelerator ETL			0 3 !	00 4 .5 .0 5			
Total				14	0.0		
Raw Rubber Mooney Viscosity ML(1+4)100°C		49	48	47	62	110	81
Compound Properties Mooney Scorch ML(1)125°C Vm t5	min	62 7.0	57 6.8	60 7.4	71 6.3	95 5.8	85 7.1
Vulcanizate Properties (Cure;20min,at 160°C) Original H _s (Durometer-A) T _B E _B	MPa % MPa	66 19.8 360 3.1	68 22.6 360 3.4	67 21.4 340 3.3	68 21.7 340 3.5	68 21.4 340 3.4	69 20.8 330 3.4
Aging Test (70hrs at 100°C) A_{H} $A_{C}(T_{B})$ $A_{C}(E_{B})$ Compression Set	pts % %	4 -18 -17	6 -18 -17	5 -14 -15	5 -17 -18	7 -13 -21	6 -14 -21
(70hrs at 100°C) CS	%	39	33	36	35	36	40
Low Temperature Properties Gehman Torsion Test	,0	30	30				.0
T ₂	${\mathbb C}$	-30.1	-31.7	-30.2	-29.8	-30.0	-29.9
T ₅	$^{\circ}$					-31.8	
T ₁₀	$^{\circ}$	-35.8	-36.0	-35.1	-34.8	-34.8	-35.0
T ₁₀₀	℃	-40.8	-41.1	-38.9	-37.8	-38.2	-38.1
Tg	°C	-37.5	-37.4	-35.7	-34.1	-34.4	-34.6
Permanent Set (-10°C, 200%Elongation) PS	%	100	110	15	10	10	11

^{*}These figures are only for reference purposes and therefore do not serve as specifications.

Applications

Hoses, belts and rolls, electrical wire and cables, sponges, window profiles, automotive rubber parts, industrial rubber goods, rubber coated fabrics, and others

Sulfur-modified Grades

Skyprene Sulfur-modified Grades

R-22, R-10, 505

Skyprene sulfur-modified grades have sulfur links (-Sx-,x:2 to 6) in their molecular chains. Their characteristics, therefore, differ from those of mercaptan-modified Skyprene grades in the following respects.

- 1. The molecular chains are degraded by mechanical shearing forces, which, in turn, reduces the mooney viscosity.
- 2. The mooney viscosity drops during the initial storage period and then rises gradually.
- 3. Compared with mercaptan-modified grades, the sulfur-modified grades offer superior mechanical strength, including tensile and tear strength. Their heat resistance, however, is inferior to that of the mercaptan grades.
- 4. The sulfur-modified grades adhere more easily to textiles and metals.
- 5. Vulcanization is possible through the addition of metal oxide, mainly zinc oxide, without the need of a vulcanization accelerator.

SKYPRENE R-22

Skyprene R-22 is a sulfur-modified general-purpose grade having a medium rate of crystallization.

SKYPRENE R-10

Skyprene R-10 and R-22 are similar in all respects except the better crystallization resistance of R-10. It is easier to process R-10 in cold weather than R-22.

SKYPRENE 505

Skyprene 505 has heat resistance close to that of the mercaptan-modified grades and features better dynamic fatigue resistance.

Applications

Belts, rubber linings, wet suits, sponges, industrial rubber goods

<Table 5> GENERAL PROPERTIES

SKYPRENE PRODUCT	R-22	R-10	505	
Formulation SKYPRENE MgO Stearic acid SRF Carbon Black (N-770) ZnO		100 4 0.5 30 5		
Total			139.5	
Raw Rubber Mooney Viscosity ML(1+4)100°C		42	40	42
Compound Properties Mooney Scorch ML(1)125°C Vm t5	min	47 29.5	32 27.6	42 19.2
Vulcanizate Properties (Cure;20min, at 160°C) Original $H_{\rm S}({\rm Durometer-A})$ $T_{\rm B}$ $E_{\rm B}$ $M_{\rm 300}$	MPa % MPa	71 23.5 490 14.2	71 22.8 490 13.7	71 23.8 510 13.7
Aging Test (70hrs at 100°C) A_{H} $A_{c}(T_{B})$ $A_{c}(E_{R})$	pts % %	3 -14 -21	3 -15 -27	4 -13 -16
Compression Set CS (100°C × 22hrs) CS (100°C × 70hrs)	% %	47 63	43 61	34 49
Low Temperature Properties Gehman Torsion Test T ₂ T ₅ T ₁₀ T ₁₀₀ Tg	ີ ວີ ວີ ບີ	-30.9 -35.0 -35.5 -40.7 -36.9	-30.4 -33.8 -35.1 -39.5	-31.5 -35.2 -35.9 -40.7 -37.3
Permanent Set (-10°C, 200%Elongation) PS	%	88	31	84

^{*}These figures are only for reference purposes and therefore do not served as specifications.

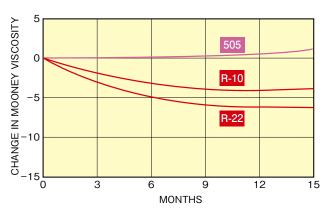
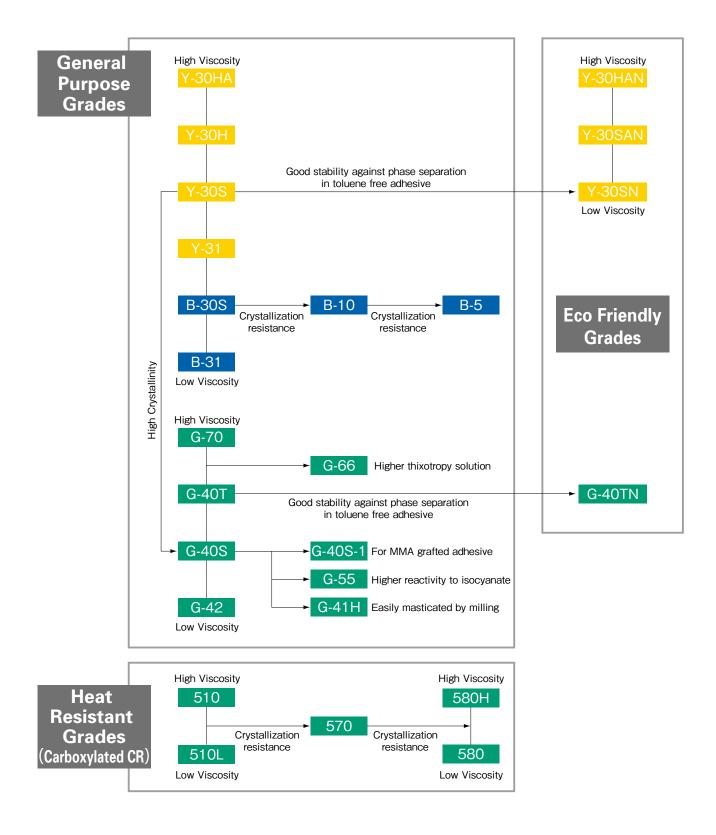



Figure-3 Stock stability of R-10, R-22 and 505, change in mooney viscosity at room temperature

Development Chart

Products and Characteristics

Product	Mooney viscosity	10% Solution Viscosity*3	Crystallization Rate	Chip Size	Characteristics	
General-Pu	-	•				
G-40S	81~95*1	300~600			Typical grade of fast crystallization rate and excellent initial bonding strength.	
G-40S-1	81~99*1	300~700			Ideal for use in MMA grafted adhesive for soft PVC and synthetic leather.	
G-40T	96~113*1	600~900			Higher viscosity form of G-40S with superior heat resistance.	
G-70	_	1600~2400	Fast			
G-41H	75~90*1	250~500	i ast		Thiuram stabilized type. Easily masticated, excellent initial bonding strength.	
G-42	36~48*1	70~130			Lower viscosity form of G-40S. Ideal for use in sprays.	
G-55	80~96*1	300~600		Small	Higher reactivity to isocyanate than G-40S.	
G-66	_	900~1500			Fluidity of the solution is low and higher thixotropy than other grades.	
Y-30S	111~135*2	600~1100			Typical grade. Medium crystallization rate, higher heat resistance and tack retention time.	
Y-30H	_	1400~2100				Higher viscosity form of Y-30S with superior heat resistance.
Y-30HA	_	1900~2600	Medium		Trigher viscosity form of 1-505 with superior heat resistance.	
Y-31	90~110*2	340~660	Medium		Lower viscosity form of Y-30S.	
B-30S	45~53*2	110~170			Lower viscosity form of Y-31.	
B-31	36~44*2	_				Lower viscosity form of 1-or.
B-5	45~53*2	_	Slow	Large	Crystallization resistant form of B-30S. Effective for	
B-10	47~55*2	-	Slow		the improvement of tack retention time.	
Heat resista	int					
510	48~60*1	120~260	Fast		Excellent heat resistance and initial bonding strength.	
510L	35~47*1	80~170	rasi		Excellent fleat resistance and initial bonding strength.	
570	42~64*1	ı	Medium	Small	Typical grade. Medium crystallization rate, excellent heat resistance.	
580	35~47*1	60~130	Slow		Slower crystallization and lower carboxyl content form of 570.	
580H	57~77*1	100~300	CIOVV		Effective for the improvement of tack retention time.	
Eco Friendly	y					
G-40TN	96~113*1	600~900	Fast		Eco friendly grades of G-40T.	
Y-30SN	_	600~1100		Small	Eco friendly grades of Y-30S.	
Y-30SAN	_	1100~1700	Small Medium		Eco friendly grades. Higher viscosity of Y-30SN.	

Y-30HAN

1900~2900

Eco friendly grades of Y-30HA. Highest viscosity of Y Type.

^{*3: 10%} Toluene solution viscosity (mPa.s/Brookfield (BL) type viscometer, 23°C)

General-Purpose Grades

Skyprene General-Purpose Grades

B-30S, B-31, Y-31, Y-30S, Y-30H, Y-30HA, B-5, B-10, G-40S, G-42, G-40T, G-70, G-40S-1, G-41H, G-55, G-66

CR-based adhesives are used in wide-ranging applications. They feature excellent adhesion, flame resistance, chemical resistance, oil resistance, and bonding strength. Skyprene general-purpose grades for adhesive applications are classified by crystallization rate and range of mooney viscosity.

B-30S, B-31, Y-31, Y-30S, Y-30H, Y-30HA

These grades have moderate crystallization rates. The B types are low molecular weight and the Y types are high molecular weight. Both can be used as blends to adjust adhesive viscosity.

B-5, B-10

These are crystallization-resistant grades. They are effective in improving tack retention time.

G-40S, G-42, G-40T, G-70

These grades have a high crystallization rate. The low molecular weight types, represented by G-42, are used for spray adhesives. The high molecular weight types, G-70 show higher heat resistance than their low molecular weight counterparts and can reduce costs by lowering the CR content of adhesives.

G-40S-1

The ideal use for this grade is as MMA-grafted adhesive for soft PVC or synthetic leather. The coloration of this solution is better than that of other grades.

G-41H

This grade shows easy mastication and the stability of adhesive viscosity, and the phase separation stability are better than other grades.

G-55

This grade shows higher reactivity to isocyanates.

G-66

This grade shows specific solution properties, such as a low fluidity in solution and higher thixotropy.

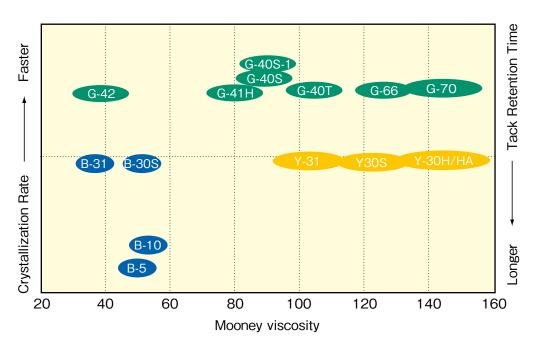


Figure-4 Characteristics and Relationship of General-Purpose Grades

Heat Resistant Grades (Carboxylated)

Skyprene Heat Resistant Grades

570, 510, 510L, 580, 580H

Heat resistant carboxylated grades can be readily cured with metal oxide. Due to the rapid formation of ionic crosslinks, these grades exhibit superior heat resistance at temperatures over 80°C.

570

Skyprene 570 is a representative grade of Heat resistant Grades having a medium crystallization rate.

510, 510L

Skyprene 510 and 510L are fast crystallization rate form of Heat resistant grades.

580, 580H

Skyprene 580 and 580H are slow crystallization rate form of Heat resistant grades.

<Table 6> Bonding Properties of Heat Resistant Grades

SKYPRENE PRODUCT	570	510	Y-30S	G-40T	
Formulation (phr) Rubber compound (milling) CR MgO ZnO	100 4 2				
Pre-reaction (23°C for 16hrs) Alkylphenolic resin MgO Toluene Water		4 2 8 0.	1 0		
Solvents Toluene Normal Hexane Ethyl acetate iso Propanol	134 128 86 10	134 128 86 10	116 117 78 –	126 123 82 –	
Solid content (%)	25.5	25.5	26.9	25.7	
Solution viscosity (mPa·s/25°C)	2700	2900	3100	3100	
Peel strength Bonding strength (at 23°C) after 1hr After 7days Bonding strength at high temp. after 5min. (at 80°C) After 7days (at 80°C) After 7days (at 100°C) N/25mm	101 157 76 98 86	109 145 70 97 76	73 123 9 62 21	79 123 9 55 25	

^{*}These figures are only for reference purposes and therefore do not serve as specifications.

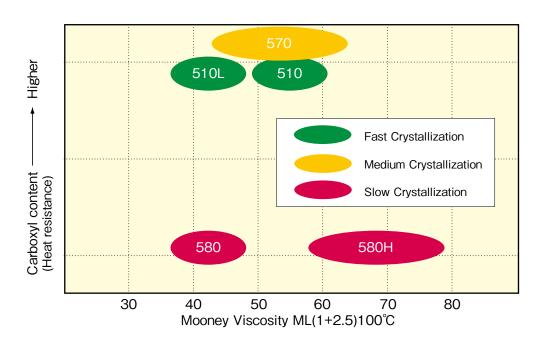


Figure-5 Characteristics and Relationship of Heat resistant Grades

Eco Friendly Grades

Skyprene Eco Friendly Grades Y-30SN, Y-30SAN, Y-30HAN, G-40TN

Polychloroprene rubber is widely used for dry contact adhesives because of good adhesion, flame resistance, chemical resistance and high bonding strength. These adhesives are made by dissolving CR in organic solvent (toluene, MEK, etc). To reduce the effect on environment and human health, the harmful solvent (Benzene, Toluene, Xylene (BTX)) should be decreased in the adhesives.

However changing composition of solvent might cause the problem of phase separation on adhesives in storage period. TOSOH developed Eco Friendly Grades, which improve stability against phase separation for Eco Friendly Adhesive like a toluene-free formulation.

<Table 7 > Bonding Properties of Y-30S and Y-30SN

	Typical fo	ormulation oluene	Eco Fi formu		
SKYPRENE PRODUCT	Y-30S	Y-30SN	Y-30S	Y-30SN	
Formulation (phr) Rubber compound (milling) CR MgO ZnO		100 100 4 4 2 2			
Pre-reaction (23°C for 16hrs) Alkylphenolic resin MgO Water Toluene Normal Hexane	4	1 .4	40 4 0.4 — 80		
Solvents Toluene Cyclo Hexane Normal Hexane Ethyl acetate Acetone	13 - 12 8	_	- 8 8 8 8	0	
Solid content (%)	25	5.8	27	'.3	
Solution viscosity (mPa·s/25°C)	2680	2510	2410	2360	
Stability at 23°C original after 1 week after 1 month after 3 months	no separation no separation	no separation no separation	no separation Phase separation Phase separation Phase separation	no separation no separation	
Peel strength (Original) Bonding strength at 23°C after 1hr (N/25mm) after 7days (N/25mm) Bonding strength at 80°C after 7days (N/25mm)	73 163 56	77 171 53	103 172 61	99 171 62	

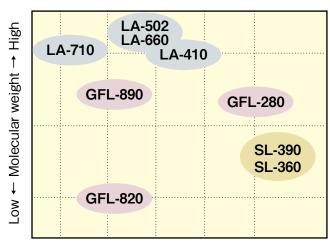
^{*}These figures are only for reference purposes and therefore do not serve as specifications.

Line up of Eco Friendly Grades

Product	Crystallization Rate	10% Toluene solution Viscosity (mPa·s)
Y-30SN	Medium	600~1100
Y-30SAN	Medium	1100~1700
Y-30HAN	Medium	1900~2900
G-40TN	Fast	600~900

Storage temp. 23°C

	Typical formulati	on with Toluene	Eco Friendly Formulation		
	Y-30S	Y-30SN	Y-30S	Y-30SN	
Original		F-443V	B. Alle	A NOV	
After 1 week	A 10, 10	Total Control of the	Total Alley	TANY TO SERVICE OF THE PARTY OF	
After 1 month	F. (413)	THE SALES			
After 3 months	Tana,	Fair.	Vins Alti	ill name	


LATEX Grades

Products and Characteristics

Latex Grades

LA-502, LA-410, LA-710, LA-660, GFL-280, GFL-820 GFL-890, SL-360, SL-390, SL-590, LH-430

Volatilization of organic solvents in the atmosphere can cause fires and have an adverse effect on the environment and human health. Therefore the necessity for more solvent-free products is growing. Tosoh has developed Skyprene Latex as one type of chloroprene rubber to replace solvent-based materials used for industrial and adhesive applications.

Slow← Crystallization rate→ Fast

Figure-6 Characteristics and Relationship of Latex Grades

Industrial Applications

Product	Crystallization rate	Characteristics	Application
LA-502	Medium	Typical grade for industrial application.	Claves
LA-410	Relatively Fast	Excellent physical properties and abrasion resistance.	Gloves, (dip forming)
LA-710	Slow	Excellent crystallization resistance.	(3.5 10.11

Adhesive Applications

LA-660	Medium	Anionic latex for bonding urethane foams by 2 components adhesive.	Adhesive (wet contact)	
GFL-280	Fast	Ondervoleted animals later. From Heat stability and benefits a	Adhesive (dry contact)	
GFL-820	Madium	Carboxylated anionic latex. Excellent stability and bonding strength.		
GFL-890	Medium	Sucrigur.		
SL-360		Higher stability against acid than SL-390.	- Adhesive	
SL-390	Fast	Typical grade for adhesive.	(wet to dry contact)	
SL-590		Special grade for excellent bonding strength in higher temp.		

Special Applications

LH-430	_	Special anionic latex.	Surface treatment

[GFL] is a registered trademark of TOSOH CORPORATION

Latex Grades

Industrial Applications

LA Types

These types have excellent stability and their vulcanization products exhibit superior properties. Products made from LA-410 show excellent physical properties and high abrasion resistance. The vulcanization product made from LA-710 has good crystallization resistance.

General Properties of LA Types

Product	LA-502	LA-410	LA-710	
Polymer Type	Chloroprene			
Emulsifier	Rosin salt			
Solid content (%)	51 ~ 55	50 ~ 54	50 ~ 54	
pН	12 ~ 14	12 ~ 14	12 ~ 14	
Crystallization Rate	Medium	Relatively Fast	Slow	
Characteristics	General-Purpose	Strength, Abrasion resistance	Crystallization resistance	

Latex Grades

Adhesive Applications

GFL Types

GFL types are designed for dry contact adhesive applications. They have the advantages of gel-free components and higher cross-linkability with ZnO. This is superior to those of traditional carboxylated chloroprene latex. In addition, the GFL types have better mechanical, chemical and electrolytic stability than traditional anionic latex.

SL Types

The SL types have fast crystallization rate, and they also display good bonding strength caused by gel-free components, same as GFL types.

The stability of latex is influenced by pH value, therefore SL types can be used for wet-contact adhesive by adjusting the pH.

LA-660

The stability of LA-660 has been adjusted for two components PU foam adhesives. The LA-660 polymer has a high molecular weight as well as high gel content, while the crystallization rate is medium. This means that the bonding strength and heat resistance are very high, whereas the adhesive layer is soft.

General Properties of Latex Grades for Adhesive Applications

Product	GFL-820	GFL-890	GFL-280	SL-360	SL-390	LA-660
Polymer Type	Chloroprene-Methacrylic acid			Chloroprene		Chloroprene
Emulsifier	Anionic		Rosin salt		Rosin salt	
рН	2.1 ~ 6.0		12 ~ 14		12 ~ 14	
Gel content	None		None	None	High	
Solid content (%)	50 ~ 56		50 ~ 54	50 ~ 54	51 ~ 56	
Molecular Weight	Low	High	High	High	High	Very High
Crystallization Rate	Medium	Medium	Fast	Fast	Fast	Medium
Stability						
Mechanical	Good			Good		Good
Storage	Good			Good		Good
Electrolyte	Good			Unstable (under lower pH)		Unstable (under lower pH)

TOSOH CORPORATION

Headquarters

Address:3-8-2, Shiba, Minato-ku, Tokyo 105-8623, Japan Telephone: +81 3 5427 5146 Fax: +81 3 5427 5210 E-mail: cr-csm@tosoh.co.jp URL: www.tosoh.co.jp

Research Laboratory

Tosoh Europe B.V.

Address: Rembrand Tower,Amstelplein 1, 1096 HA Amsterdam The NetherlandsTelephone: +31 20 565 0010

E-mail: info.tse@tosoh.com URL: www.tosoh-europe.com

Tosoh USA, Inc.

Address: 3600 Gantz Road, Grove City, OH 43123-1895 Telephone: +1 614 277 4348 U.S. Toll Free: +1 866 844 6953

Fax: +1 614 875 8066

Tosoh Asia Pte. Ltd.

Address: 63, Market Street, #10-03, Bank of Singapore Centre, Singapore 048942

Telephone: +65 6226 5106 Fax: +65 6226 5215

Tosoh Shanghai Co., Ltd.

Address: Room 2618, International Trade Center, No. 2201 Yan-An West Road, Shanghai, China 200336

Telephone: +86 21 6270 2810 Fax: +86 21 6270 2820 E-mail: info@tosoh.com.cn URL: www.tosoh-tsc.com